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ABSTRACT

The ground level in Pozzuoli, Italy, at the center of the Campi Flegrei caldera, was
monitored by tide gauges between 1970 and 1976 and then continuously since 1982. Tide gauges
offer a long record of a variable that is believed to be related to the activity of an underlying
shallow magma chamber. Previous work suggests that the dynamics of the Campi Flegrei
system, as reconstructed from the tide gauge record, is chaotic and low dimensional. According
to this suggestion, in spite of the complexity of the system, at a time scale of days the ground
motion is driven by a deterministic mechanism with few degrees of freedom; however, the
interactions of the system may never be describable in full detail. Our new analysis of the tide
gauge record from January 1987 to June 1989, using Nonlinear Forecasting, confirms low-
dimensional chaos in the ground elevation record at Campi Flegrei and suggests that Nonlinear
Forecasting could be a useful tool in volcanic surveillance.

INTRODUCTION

The Campi Flegrei volcanic area is historically known for the
continuous slow pulsations of the ground (e.g., Lyell, 1830,
p. 326-339; Lirer et al., 1987) that closely accompany other symp-
toms of volcanic activity. Lyell (1853, p. 507-519) provided an ele-
gant discussion of ancient ground-level changes in this region, rel-
ative to sealevel. His deduction was based in part on past submersion
documented by molluscan borings found up to 6 m above the base
of marble columns in a marketplace buiit in the second century B.C.
in the town of Pozzuoli, at the center of the Campi Flegrei caldera
(Fig. 1). In 1538 an uplift of ~7 m in 2 days preceded the last eruption
in the area, which had been undergoing uplift since 1502 (Dvorak and
Gasparini, 1991). Recent uplift events, of ~2 yr duration, took place
in 19701971 (1.56 m near the center of the caldera) and in 1982-1984
(1.85 m, also near the center of the caldera) and were accompanied
by increased fumarolic and seismic activity. Both the local popula-
tion and the scientific community had to contend with the possibility
of a volcanic eruption in a densely populated area (~400 000 inhab-
itants within a caldera ~12 km in diameter).

Substantial stratigraphic, petrological, and geophysical evi-
dence suggests that a shallow magma chamber, the roof of which is
probably 3.5-4 km below the ground surface, is responsible for the
volcanic activity in Campi Flegrei (Barberi et al., 1984; Lirer et al.,
1987; De Natale et al., 1991; Luongo and Scandone, 1991). Ground
movement is the primary signal of volcanic activity in the area (Cor-
rado and Luongo. 1981; Barberi et al., 1984: Osservatorio Vesuvi-
ano, 1985-1990; Berrino and Corrado, 1991). In spite of the progress
in modeling the Campi Flegrei ground deformations as a conse-
quence of the activity of a shallow magma chamber (e.g.. see De
Natale et al., 1991). an understanding of the cause and effect is
incomplete and may ultimately be unattainable because of the com-
plexity of the system and the multitude of the possible interactions.

Cortini et al. (1989) proposed that the Campi Flegrei volcanic
and subvolcanic system could be considered as a thermodynamic
black box for which only one state variable of the system is known,
the ground level at Pozzuoli. The Campi Flegrei area is unstable on
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time scales ranging from days to thousands of years; at the shortest
time scale, the system shows a macroscopic response to tidal cycles;
that is, to differential gravitational forces of only ~1 ppm. In this
perspective, Cortini et al. (1991) concluded that the Campi Flegrei
system, at time scales between days and thousands of years, is far

Figure 1. Hlustration of marble columns in second century B.C. market-
place (previously thought to be temple of Serapis) at Pozzuoli, Italy. Fron-
tispiece from Lyell (1853). Lithodomus borings indicate submergence of
the columns to ~6 m above their bases during previous deflation cycle of
Campi Flegrei.
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from thermodynamic equilibrium, and that its dynamics (recon-
structed by the daily tide gauge record) may be chaotic. However,
when observed at a time scale of tens of thousands of years, the
Campi Flegrei system is approaching thermodynamic equilibrium,
i.e., a stable fixed state that in phase space (see next section) is
described as a point attractor. On the basis of differences between
the frequency spectra of the ground motion in the 1971-76 and
1987-89 periods, Cortini et al. (1991) proposed that the high-fre-
quency dynamics of Campi Flegrei underwent a critical transition
between phase locking (with tidal forces) and low-dimensional
chaos. probably in coincidence with the uplift crisis of 1982,
Three nonlinear forecasting methods are reviewed by Farmer
and Sidorowich (1988) and Casdagli {1989). The forecasting method
we use in this paper has been described and used on nongeological
data sets by Sugihara and May (1990) and is implemented by Dy-
namical Systems Inc.' (Schaffer and Tidd, 1990). We use it to test the
hypothesis of chaos in the Campi Flegrei tide gauge record and to
explore the possibilities for surveillance offered by this method.

NONLINEAR FORECASTING

Nonlinear Forecasting is a recent development in the theory of
dynamical systems. Imagine two identical deterministic systems
starting from slightly different initial conditions. If, as time passes by,
the two systems diverge exponentially, then their dynamics is said
to be “‘chaotic.”” This characteristic is called ‘‘sensitive dependence
on initial conditions”” and explains why a chaotic system can be
predictable in the short term but is inherently unpredictable in the
long term, even though the forces that drive it may be perfectly
known (Cvitanovic, 1984; Schaffer et al., 1988).

The temporal evolution of a physical-chemical system s called
its dynamics and can be described by its state variables. A state of
a system can be represented as a point in a conventional space (state,
or phase space) whose n coordinate axes x,(1), x,(¢), . . . , x,(f) each
represent a state variable; that is, an independent parameter that is
relevant to the description of the system. When the system changes,
so does the position of its representative point in the phase space.
The dynamics of a system is represented by a trajectory in phase
space, and study of the geometrical properties of that trajectory can
provide information about the system’s dynamics. In the study of
natural systems, one generally has only a time series x(¢), but a phase
portrait can be reconstructed by plotting x(¢) vs. x(t + T) vs. x(t +
2T)yvs. . .. x[t + (n + 1)T], where T is an appropriate time delay,
or lag. The dynamics thus portrayed is said to be embedded in an
n-dimensional space. The geometry of the reconstructed phase por-
trait can be studied and quantified.

The difference between a random, or noisy, dynamics and a
chaotic dynamics is in the magnitude of n, the number of state
variables required to fully describe the system. The number of state
variables required to describe random noise tends to infinity,
whereas chaotic dynamics can be described by as few as three state
variables. This difference is the basis of one method used to identify
chaos, in which one measures the dimension of the phase-space
region visited by the system; this is termed the correlation dimension
(Grassberger and Procaccia, 1983). This approach can give quanti-
tatively.misleading results if the data set is small or if the data are
treated incorrectly; moreover, the choice of the intervals used to
calculate the slope of the correlation integrals is always somewhat
arbitrary (e.g., Schaffer et al.. 1988).

Nonlinear Forecasting is a stronger method for diagnosing
chaos. In this method, first the time series is lagged and embedded
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in an n-dimensional phase space, as described above. A mapping of
the visited phase-space volume onto itself is then constructed as
follows. A small volume 3V, in phase space, visited at time 1., is then
linked with a new volume 8V, , ,, visited by the system at time ¢, +
dt. This procedure is repeated for every point visited by the system
in phase space. This mapping, or library, of the phase-space volume
is then used to formulate predictions about the future evolution of the
system (Sugihara and May, 1990). The difference between a random,
or noisy. dynamics and a chaotic dynamics can now be described as
follows. A noisy dynamics is perturbed by many different causes and
can move from a small phase-space volume 3V, to any nearby
volume. In contrast, a chaotic dynamics. because it is deterministic,
must move in a well-defined direction. Because of the sensitivity to
initial conditions, 8V, ., will be larger than 3V, and. for & large
enough. 3V, ., will cover the entire visited volume. This permits the
formulation of predictions for & < k,, where &, is some threshold
value.

The dynamics of natural systems are always obscured by some
amount of noise, which derives at least in part from the fact that
numbers fed to computers can have only a limited number of digits;
that s, they are approximations. Other sources include experimental
error and, because natural systems are never isolated, the interfer-
ence of other systems. Noise tends to decrease the goodness of fit
measured by the correlation coefficients between the predicted and
the observed values (Fig. 2). If noise is too large, or if the number
of the state variables is too great, a chaotic dynamics that may
underlie a system cannot be identified, and prediction becomes
impossible.

Figure 2 shows the results of Nonlinear Forecasting applied to
a well-known chaotic dynamics (that of the logistic map for £ = 3.7;
May, 1976). Multiplicative Gaussian noise is added to the data series
analyzed in the upper curve by replacing each of the 500 data points
x by x(1 + z), where z is a number randomly selected from a Gaus-
sian distribution with a mean value of zero and with o = 0.025. The
correlation coefficient ~* between the predicted and the observed
values is plotted as a function of the prediction interval. The shape
of these curves is typical of chaotic dynamics that are predictable
only on a limited time horizon.

The initial 209 of the data are used to produce the first predic-
tion, which is compared with the following point. The library is
updated for as long as later points are analyzed; thus, the last pre-
diction is based on a library five times as large as the first one.

0 5 10 15
PREDICTION INTERVAL (ITERATIONS)

Figure 2. Upper curve illustrates Nonlinear Forecasting applied to sample
chaotic data series 500 points long (logistic map for k = 3.7) (see May,
1976). Correlation coefficient r? between predicted and observed values is
plotted as a function of prediction interval &t (which, in this example, is
number of iterations of logistic map). Lower curve is produced by con-
tamination of chaotic data series with Gaussian noise as described in text.
Shape of both curves is typical of chaotic dynamics that is predictable on
a short term (because of underlying determinism) but unpredictable on
longer terms (because of sensitivity to initial conditions).
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Throughout this paper we set the embedding dimension D, = 2, the
embedding delay T = 1, and the prediction parameter that sets the
size of 8V,. € = 0.005, because these values maximize *. Addition
of noise decreases the length of the time interval over which reliable
predictions can be made because it increases the rate at which in-
formation about the system is lost (Wales, 1991).

DATA AND ANALYSIS

We analyzed the numerical daily tide gauge record x(z,) from
January 1, 1987, to June 27, 1989 (Fig. 3). We calculated the first
differences of the data to analyze the daily series dx,, = x(r,) — x(t,,, )
(i.e., the daily elevation changes). The reason for calculating first
differences is as follows. The magnitude of x(z,) is a few metres, and
that of dx, is a few millimetres. If the series dx, were completely
random, then the best prediction one could make would be that
x(1,,. ) = x(1,), and the error on the predicted value would be of the
order of 107*. For increasing prediction intervals, the predicted
values slowly diverge from those of the analyzed random walk, and
the correlation coefficient between the predicted values and the
observed values slowly decreases as the prediction interval in-
creases, as for a chaotic dynamics (Fig. 2), although the dynamics is
a random walk. Taking the first differences of the data preserves its
variations, which in this example are random. The error on the
prediction is now of the same order as the signal. In this example,
the correlation coefficient 2 between the predicted values and the
observed values will be very low and independent of the prediction
interval 8¢, and a plot of  as a function of 8¢ will be very different
from that in Figure 2. This procedure reveals whether the high-
frequency variations of the ground elevation are chaotic and readily
distinguishes a chaotic from a random dynamics.

Figures 4 and S illustrate how the predicted values compare with
the observed values for a prediction interval & = 1 day; perfect
predictions align on the line of unit slope in Figure 4. The correlation
coefficient * between the data predicted for the following day and
those actually observed on the following day is ~0.77. The points
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Figure 3. Daily ground elevation at harbor of Pozzuoli (January 1, 1987, to
June 27, 1989), near center of Campi Flegrei caldera, as measured by tide
gauges (Corrado and Luongo, 1981; Berrino and Corrado, 1991; data from
Osservatorio Vesuviano).
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align on vertical lines because the resolution of the tide gauge record
is limited to | mm; Nonlinear Forecasting, in contrast, does not
recognize this limitation. Figure 6 shows how the linear correlation
coefficient /* varies as a function of the prediction interval. The
results of the analysis for variations of ground motion in Campi
Flegrei, plotted in Figures 4-6, are typical of a chaotic dynamics,
possibly blurred by some noise (Sugihara and May, 1990). As noted
above, we set the embedding dimension D, = 2 and the embedding
delay T = 1. We find that our predictions vary by <10% with large
variations (D, < 5. T = 20) in these parameters. Thus, our choice of
values for these parameters is not critical to our results.
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Figure 4. Nonlinear Forecasting analysis of data shown in Figure
3 after calculating first differences. Predicted daily elevation
changes are plotted as a function of observed elevation changes
for prediction interval 5t = 1 day (i.e., for following day). Linear
correlation coefficient /2 between predicted and observed values is
~0.77.
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Figure 5. Nonlinear Forecasting analysis of data shown in Figure 3 after
calculating first differences. Observed and predicted data series (predic-
tion interval 5¢ = 1 day) are plotted as a function of time.
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Figure 6. Nonlinear Forecasting analysis of data shown in Figure 3 after
calculating first differences. Linear cuireiation coefficient r* between pre-
dicted and observed values, calcuiated as in Figute 4, is plotted as a
function of prediction interval. Note similarity to chaotic results plotted in
Figure 2.

The analysis presented above 1s limited to the small data set
available at present. The time period analyzed is one of overall
ground sinking (Fig. 3). The complete time series, including time
periods of overall uphift, shouid be analyzed: unfortunately, these
data were not available to us at the time of this study. A detailed
comparison between the post-1970 and the post-1984 data 1s also
necessary to fully test the hypothesis, suggested by Cortini et al.
(1991), that the two periods are characterized by different dynamical
regimes.

CONCLUSIONS

Nonlinear Forecasting of the daily elevation changes demon-
strates that the ground motion in the Campi Flegrei caldera is chaotic.
The evidence for chaos provided by Nonlinear Forecasting is stron-
ger than that provided by the Grassberger-Procaccia method because
of the uncenainties in that method (Farmer and Sidorowich, 1988).
Nonlinear Forecasting requires very little manipulation of the data,
only calculating first differences, whercas analysis of the short-term
dynamics of Campi Flegrei using the Grassberger-Procaccia method
requires subjective detrending. Our results show that the varnations
of the ground elevation can probably be forecast on a time scale of
a few days. Why a complex system such as a magma chamber,
interacting with many external factors, may on some time scales
have a relatively simnlc and predictable dynamics, 1s a question that
is not addressed here.

This study includes « time period <3 yr long. Given a longer
record. the Campi Flegrei system may be intrinsically more predict-
able over time scales longer than 1-2 days. The agreement between
the predictions of Nonlinear Forecasting and the ground-level data,
on a time scale of days, suggests that this technique should be more
thoroughiv explored because it potentially could be of great help
during a possible future activiry crisis in Campi Flegret, a very high
risk volcanic arei. The use of this method in volcanic surveillance
to forecast future events immediutely prior 10 an eruption is a for-
midable and unprecedented problem that is beyond the scope of this
[uper. .
We note that verteenl orovnt imovements are recorded almost
exclusivelv oncalderas iocaied by the sea. such as Campi Flegreiand
Rabaul in Papua. New Guineu tMcKee etal.. 1984), where elevation
changes are verv conspicuous. In fact, it was Pozzuol fishermen
whooin 197G, noticed thar the sround was nising. Such large ground
motions also may be common in many active volcanic areas away
from such a conventent datiant as the surface of the sea, and an effort
should be made o detent s record these ground motions as well.
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